REVIEW QUESTIONS AND EXERCISES
- Write the algorithm and draw the flowchart to find the average of given 3 values.
Ans :
1. Read n1,n2 and n3 , where n repesent number.
2. avr = n1+n2+n3 / 3
3. print avr
FLOWCHART :
flowchart TD
A([Start]) --> B[Read n1,n2 and n3]
B --> C[avr = n1+n2+n3 / 3]
C --> D[Print avr]
D --> E([Stop])
- Write the algorithm and draw the flowchart to find the area and circumference of a circle of radius r.
[Hint: Area= πr²; Circumference = 2πr]
Ans :
1. Read r
2. Area = 22/7 \* r\*r , Circumference = 2\*22/7\*r
3. Print Area, Circumference
Flowchart :
flowchart TD
A([Start]) --> B[Read r]
B --> C[Area = 22/7\*r\*r, Circumference = 2\*22/7\*r]
C --> D[Print Area, Circumference]
D --> E([Stop])
- Write the algorithm and draw the flowchart to convert the temperature given in °c to °f.
[Hint: Use the relation °f= 1.8°c +32]
Ans :
1. Read c
2. f = 1.8 * c + 32
3. Print f
Flowchart :
flowchart TD
A([Start]) --> B[Read c]
B --> C[f = 1.8 \* c + 32]
C --> D[Print f]
D --> E([Stop])
- Draw the flowchart to find the smallest of the given three numbers.
Ans :
flowchart TD
A(Start) --> B[Input A, B, C]
B --> C{Is A < B?}
C -- Yes --> D{Is A < C?}
D -- Yes --> E[Smallest = A]
D -- No --> F[Smallest = C]
C -- No --> G{Is B < C?}
G -- Yes --> H[Smallest = B]
G -- No --> F
E --> I[Print Smallest]
F --> I
H --> I
I --> J(End)
- Draw the flowchart to solve the following series which is the summation of cosine series
$s = x - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \infty$ neglecting the terms which are less that 10^-4 in magnitude.
Ans :
flowchart TD
A[Start] --> B[Input x]
B --> C[Set term = x, sum = x, n = 1]
C --> D{Is absolute value of term >= 0.0001?}
D -- Yes --> E[Compute next term using: -1^n \* x^2n / 2n!]
E --> F[Add term to sum]
F --> G[Increment n]
G --> D
D -- No --> H[Print sum]
H --> I[End]
[Hint: The method discussed in Example 8 can be used to solve this series with minor changes.]
- Draw the flowchart to find the sum of natural numbers upto N.
[Hint: The method discussed in Example 10 can be used to solve the series, i.e. $s = 1 + 2+ 3 + 4 + … + N$.]
Ans :
flowchart TD
A[Start] --> B[Read N and set S = 0]
B --> C[Set i = 1]
C --> D{Is i <= N?}
D -- Yes --> E[S = S + i]
E --> F[i = i + 1]
F --> D
D -- No --> G[Display S]
G --> H[End]
- Draw a flowchart to solve the following series:
\(s = 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots + \frac{1}{N!}\)
Ans :
flowchart TD
A[Start] --> B[Read N, set S = 1 and i = 2]
B --> C{Is i <= N?}
C -- Yes --> D[Set fact = 1]
D --> E[Set j = 1]
E --> F{Is j <= i?}
F -- Yes --> G[fact = fact \* j]
G --> H[j = j + 1]
H --> F
F -- No --> I[S = S + 1 / fact]
I --> J[i = i + 1]
J --> C
C -- No --> K[Display S]
K --> L[End]
- Draw a flowchart to solve the following series:
\(e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots\) ∞
Neglect the terms which are less than 10 in magnitude.
Ans :
flowchart TD
A[Start] --> B[Read x, set term = 1 and sum = 1, i = 1]
B --> C{Is term >= 10?}
C -- Yes --> D[term = term \* x / i]
D --> E[sum = sum + term]
E --> F[i = i + 1]
F --> C
C -- No --> G[Display sum]
G --> H[End]
SHORT QUESTIONS
- What is an algorithm?
Ans : An algorithm presents step-by-step instructions required to solve any problem.
- What is a flowchart?
Ans : Flowchart is a symbolic or diagrammatic representation of an algorithm.
-
Procedural programming method is followed in C language.
-
Object-Oriented programming method is followed in C++.
-
Procedural programming method is commonly used for writing small programs which produce discrete results. (True/False) :
True
-
Object-oriented programming method is commonly used to develop software packages to perform a task. (True/False) :
True
-
Algorithms and flowcharts may be omitted after getting experience in writing program. (True/False) :
False